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Random Circuit Sampling (RCS) is a leading proposal for demonstrating quantum computational
advantage–the event when a noisy intermediate-scale quantum (NISQ) computer efficiently performs
a computational task that is intractable on classical computers. To achieve this goal requires one to
carefully design a problem that can be implementable and verifiable on NISQ devices and, further-
more, classically hard with respect to reasonable complexity-theoretic assumptions. We summarize
the recent experimental results by Google and USTC, then we overview complexity-theoretic evi-
dence for the classical hardness of RCS.

I. INTRODUCTION

Quantum advantage (quantum supremacy) [1]
refers to the event when a quantum computer effi-
ciently performs a computational task which would
take a prohibitively long (e.g. exponential) time on
any existing classical computers. Due to its pro-
found implications, quantum advantage is consid-
ered a milestone in the fields of quantum computa-
tion and quantum technology. In terms of the the-
ory of computation, if successfully implemented, it
would serve as a refutation of the extended Church-
Turing thesis [2], whereby demonstrating the power
of quantum computation. In terms of physics and
engineering, it would be a landmark of quantum
technology in building and manipulating complex
quantum systems with high precision. It should
be noted, however, that quantum advantage experi-
ments often do not concern about the practicality of
the problem being solved.
The leading proposals for quantum advantage are

based on sampling problems [3–5], which are ex-
perimentally feasible on existing noisy intermediate-
scale quantum (NISQ) devices with 50-100 qubits.
Furthermore, their classical hardness is supported
by complexity-theoretic evidence related to the com-
plexity class #P, a generalization of the famous
NP. Working with this complexity class is thus less
restrictive than the other assumptions needed for
justifying that, say integer factoring, is classically
hard.
Random Circuit Sampling (RCS) is currently the

most strongly supported proposal by complexity the-
ory and have been experimentally demonstrated on
superconducting quantum computers with up to 60
qubits [6–8]. The problem statement of RCS is
mathematically simple. All we need to do is to pre-
pare an (approximately) Haar-random quantum cir-
cuit on n qubits acting on an initial trivial state,
then we sample from the output state of the circuit.

This sampling task is simply native for quantum sys-
tems and, furthermore, does not require quantum
error correction. The size of the Hilbert space grows
exponentially in n. Therefore, a quantum circuit
on 50-60 qubits would require classical computers to
somehow sample from a distribution of ∼ 1018 possi-
bilities to simulate the quantum circuit, a prohibitive
challenge to existing supercomputers.

There are at least two ways in arguing about the
classical hardness of RCS. First, one can estimate
the runtime of the existing classical algorithms. This
approach is somewhat less standard as classical al-
gorithms get better overtime (e.g. tensor network
algorithms that do not store the entire quantum
state, algorithms using optimized computer archi-
tecture, etc.). The second, more fundamental ap-
proach is based on complexity theory, where one
hopes to prove the hardness in an asymptotic set-
ting (n goes to infinity). In particular, the goal is to
show that classical algorithms cannot simulate RCS
in subexponential time, which implies that increas-
ing the number of qubits would eventually leave no
chance for classical algorithms.

We describe the 2019 RCS experiment of Google
[6] in Section II, then overview the progress in prov-
ing the classical hardness of RCS in Section III. Fi-
nally, we discuss some open questions in the field in
section IV.

II. EXPERIMENTAL DEMONSTRATIONS

Google’s experiment [6] was performed on the
Sycamore chip with 54 superconducting qubits on a
2D rectangular grid. One of the qubits was not oper-
ational, so the experiment actually used 53 qubits.
All qubits can be tuned individually and are cho-
sen randomly from the set {

√
X,

√
Y ,

√
W}, where

W = (X + Y )/
√
2. Two-qubit entangling gates are

implemented between nearest-neighbor qubits. The



two-qubit gates are of the form

fSim(θ, ϕ) =

 1 0 0 0
0 cos(θ) −i sin(θ) 0
0 −i sin(θ) cos(θ) 0
0 0 0 e−iϕ

 , (1)

which is a CZ gate followed by a rotation about
XX +Y Y (a fraction of iSWAP gate) where the ro-
tation angles are chosen to minimize errors–they are
not randomized. It is now worth noting two theo-
retical justifications for this design choice of Google.
First, the work of [9] showed that a family an n-qubit
quantum circuit with 2-local gates on a 2D lattice
(related but not identical to the Sycamore layout)
is approximately 2-design if the depth is O(

√
n). In

RCS, we are interested in the output probability dis-
tribution, thus a 2-design random distribution is suf-
ficient. The depth of Google’s circuit is about 20
which can be considered of the order

√
n. Second,

the gate set must include non-Clifford gates, as Clif-
ford circuits are efficiently classically simulated due
to Gottesman-Knill theorem [10]. The layout dia-
gram from the original paper is shown in Figure 1.
Google’s largest experiment is performed on a 53-

qubit circuit with 1,133 one-qubit gates and 430 two-
qubit gates for a depth of 20. The average errors for
one- gates and two-qubit gates are 0.16% and 0.62%,
respectively, while the average readout error is 3.8%.
Notably, all these low errors are measured when the
components operate simultaneously. Using a sim-
ple intersection probability argument, the authors
estimate a total circuit fidelity of 0.2%. Intuitively
(but not rigorously in any sense), this can be inter-
preted as that 99.8% of the samples come from noise
(uniform distribution) and 0.2% of them come from
the ideal quantum circuit distribution. Therefore,
a few millions samples are sufficient to resolve the
signal from the target quantum distribution, which
is conjectured to be classically hard as discussed in
Section III.
The fidelity estimate above turned out to be in

excellent agreement experimentally with Google’s
benchmarking score called linear cross-entropy
benchmark (linear XEB). Linear XEB is proposed
in [5] as a proxy of fidelity and admits the following
formula:

FXEB =
∑

x∼Pexp

2nPid(x)− 1, (2)

where x is a bitstring sampled in the experiment and
Pid(x) is the probability of outcome x on the ideal
circuit (which needs to be computed classically). If

the experiment is perfect and the circuit is Haar-
random, then FXEB = 1 due to the so-called Porter-
Thomas property. On the other hand, if Pexp is uni-
formly random (the experiment is all noise), then
FXEB = 0. Google’s goal is to achieve a nontrivial
XEB score of 1

poly(n) . Linear XEB can be robustly

approximated with poly(n) samples as opposed to
the naive exp(n) sample complexity for fidelity.

Result: ten random circuit instances are gener-
ated. For each instance, three million samples are
collected in about 200 seconds and the XEB score
is computed. They obtained an average XEB score
of (2.24± 0.21)× 10−3. It is worth noting here that
Google did not compute XEB directly due to the in-
tractability (on their computing clusters) of simulat-
ing their full depth-20 53-qubit circuit. They instead
performed a reasonable extrapolation of XEB by
simulating simplified versions of the circuit (called
“patch” and “elided” circuits) at various number of
qubits and depths.

Classical runtime estimate: Google claimed
that a runtime estimate of 10,000 years would be re-
quired for the Schrödinger-Feynman algortithm [11]
to sample from their hardest circuit on the IBM
Summit supercomputer. This claim has been shown
to be an overestimate, see Section IV for a discus-
sion.

More recently, RCS experiments on 56- and 60-
qubit circuits have been conducted by the University
of Science and Technology of China (USTC) [7, 8],
whereby expanding the gap between classical and
quantum runtimes. See Appendix A for a summary
of their results.

III. CLASSICAL HARDNESS

We now overview the complexity-theoretic evi-
dence of the classical hardness of RCS. Interestingly,
the study of quantum circuits has an intimate con-
nection to the complexity class #P. By definition,
a #P-complete problem is to count the number of
satisfying assignments of Boolean formulas (#SAT).
We can see that this class is at least as hard as NP
since NP only asks whether there exists a satisfying
assignment (SAT).

Fact III.1 (Exact, worst-case hardness). Comput-
ing output probabilities of quantum circuits is #P-
hard.

Proving this fact is rather trivial (see e.g. [12]).
One can encode the solution of an n-variable #SAT
problem into an output probability of a poly-size
quantum circuit which performs the following steps:
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FIG. 1. Layout of the Sycamore chip with 54 superconducting qubits [6]. The nearest-neighbor couplers are control-
lable two-qubit gates. The two-qubit gates are intertwined by layers of one-qubit gates selected randomly selected
from the set {

√
X,

√
Y ,

√
W}, where W = (X + Y )/

√
2.

|0n⟩ |0⟩ → 1√
2n

∑
x

|x⟩ |0⟩ → 1√
2n

∑
x

|x⟩ |ϕ(x)⟩ ,

(3)
where ϕ(x) is the SAT formula, i.e. ϕ(x) is one if the
assignment x is satisfying and zero otherwise. The
probability of measuring the second register in state
|1⟩ thus encodes the solution of #SAT.
The above fact provides us an intuition why com-

puting exactly the probability distribution of a spe-
cific (worst-case) quantum circuit is hard. However,
it does not necessarily state that sampling from this
distribution is hard. Furthermore, we fundamentally
cannot generate a worst-case and noiseless quantum
circuit in practice. Indeed, RCS has to do with
random (average-case) and noisy circuits. Fortu-
nately, Stockmeyer [13] and Aaronson-Arkhipov [4]
have shown the following theorem which opens a way
to prove an average-case hardness of approximate
sampling.

Theorem III.2 (Sampling-to-computing reduction,
informal). If it is #P-hard to compute output prob-
abilities of a random quantum circuit up to an ad-
ditive error of O(ε/2n), then it is #P-hard to clas-
sically sample from the output distribution of a ran-
dom circuit with error ε in the total variational dis-
tance.

The “if” part of the above theorem remains an
unresolved conjecture:

Conjecture III.3 (Approximate, average-case
hardness). It is #P-hard to compute output prob-
abilities of a random quantum circuit up to an addi-
tive error of O(ε/2n).

It is good to pause and think about what we
have got here and what RCS experiments need to

do to demonstrate quantum advantage. If (i) Con-
jecture III.3 is true and (ii) an RCS experiment can
be performed with small error (each outcome’s prob-
ability has error ε/2n), then Theorem III.2 says that
this experiment is indeed a demonstration of quan-
tum advantage!

We first discuss the progress towards proving Con-
jecture III.3. The first step is proving approximate,
worst-case hardness, which has been shown by a line
of work of [3, 4, 12, 13]:

Theorem III.4 (Approximate, worst-case hard-
ness). Estimating a worst-case circuit output prob-
abilities up to O(1)-mutiplicative error is #P-hard,
unless the polynomial hierarchy (PH) collapses 1.

The next step is to convert this approximate,
worst-case hardness to approximate, average-case
hardness while preserving the error tolerance. This
step is called a worst-to-average-case reduction.
Note that Theorem III.4 applies to multiplicative er-
ror as opposed to the desired additive error in Con-
jecture III.3. This turns out not to be a problem
since Haar-random circuits satisfy a property called
“anti-concentration”, which states that, with high
probability over the choice of circuit, p(x) = Ω(2−n)
for any possible outcome x. Thus, in the average
case O(1)-multiplicative error and O(2−n)-additive
error are the same. Unfortunately, we have not been
able to achieve this reduction yet. The state-of-art
results are due to [14, 15], who constructed a reduc-
tion that, unfortunately, suppresses the error toler-
ance:

1 PH is a hierarchy of generalizations of NP and coNP.
Most of complexity theorists believe in the non-collapse of
PH (similar to, but not as confident as saying P̸=NP).

3



Theorem III.5 (Near-exact, average-case hard-
ness). Estimating random circuit output probabili-
ties up to O(e−m logm)-additive error, with m being
the number of gates, is #P-hard, unless the polyno-
mial hierarchy collapses.

In Google’s experiment, the circuit depth is
√
n,

so m = n3/2 and the power factor in this theorem
is still polynomially away from the goal of O(2−n).
Thus, Conjecture III.3 remains unproven.
We now turn to the second requirement for claim-

ing quantum advantage outlined earlier, that is, we
need the RCS experiment to have an additive er-
ror of only O(2−n). Was this achieved by Google?
Due to the anti-concentration property, this addi-
tive error translates into a constant total circuit fi-
delity. Unfortunately, without correction, the total
fidelity of the Sycamore chip is exponentially small
in the number of gates O(2−m). Therefore, Con-
jecture III.3, if shown to be correct, does not ap-
ply to Google’s experiment. We refer to the addi-
tive error condition in Conjecture III.3 as the low-
noise regime, as opposed to the high-noise regime
on non-error-corrected quantum circuits. Surpris-
ingly, [14] has shown that Theorem III.5 still holds
in the high-noise regime, provided that the noise is
gate-independent and below the error detection (not
correction!) threshold.
In summary, the classical hardness of RCS re-

mains unproven, but significant progress, especially
the work of [14], has provided more evidence and
intuition behind Google’s computational advantage
claim.

IV. DISCUSSION

We have provided an overview of Google’s RCS
experiment and the complexity-theoretic foundation
of RCS. Quantum advantage experiments have been
a major step forward, but gaps remain between the
theory behind these experiments and their actual
implementations. We briefly mention here some
open problems/challenges related to RCS not dis-
cussed in the main sections. First, a number of
classical algorithms have been proposed to challenge
Google’s 10,000-year claim. The currently best algo-
rithm [16] develops an optimized tensor contraction
strategy to simulate Google’s experiment in 304 sec-
onds. These algorithms, however, are still essentially
exponential time algorithms. Second, the robustness
of linear XEB was initially thought to be supported
by [11, 17], but the justifications in these works were
recently disproved by [18, 19], in which the authors
constructed an adversarial noise pattern which leads
to an output distribution with high XEB but low fi-
delity to the ideal circuit.

On a positive note, although this paper im-
plies that Google’s RCS experiment does not quite
demonstrate an absolute computational advantage
yet, one could find an advantage in terms of en-
ergy consumption: while Google’s experiment draws
about 100 kW of power, the Sunway supercomputer
used in [16] takes 13 MW. Finally, recent works
have proposed applications of RCS in cryptography
[20, 21] and Gibbs state preparation [22].
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Appendix A: USTC’s experiments

FIG. 2. Recent superconducting RCS results by Google and USTC, table copied from [8].
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