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Abstract

The area-law conjecture states that the entanglement entropy of the ground state of a gapped local
Hamiltonian only scales with the boundary area of the bipartition. It is one of the central questions in
quantum Hamiltonian complexity due to its profound implications for classical simulability of quantum
many-body systems. Since the first proof for the 1D case by Hastings [1], new mathematical tools
have been developed to simplify the proofs specifically for frustration-free systems in hoping to approach
higher-dimensional area laws. In this report, we present an overview of the Chebyshev-based Approximate
Ground State Projector technique, which has enjoyed successes in proving 1D and 2D area laws. We
review the seminal papers [2–4] that successfully employed this technique.

1 Introduction

Ground states of local Hamiltonians are the central object of study in quantum many-body physics. Quan-
tum entanglement gives rise to an exponentially large Hilbert space, which is the fundamental obstacle in
simulating quantum systems on a classical computer. What are the conditions under which these ground
states can be described efficiently, and when are quantum systems efficiently simulatable on a classical com-
puter? A number of many-body physics algorithms based on tensor networks [5] have been developed, where
one hopes to find efficient descriptions of quantum states. These algorithms all require that the quantum
states have small entanglement. Area laws provide a tool for bounding the entanglement that ground states
of a quantum system can exhibit.

Definition 1.1 (Entanglement entropy). If ρAB is a state of a bipartite system, then its entanglement
entropy is defined as the von Neumann entropy of the reduced density matrix of its subsystems, i.e., abusing
notation, S(ρAB) = S(TrA[ρAB ]) = S(TrB [ρAB ]).

Definition 1.2 (k-local lattice Hamiltonians). Consider n particles with local dimension d (e.g. d = 2 for
qubits) that are positioned on the sites of a regular D-dimensional lattice with an underlying Hilbert space
(Cd)⊗n. On this lattice we consider a k-local Hamiltonian H =

∑
i hi, where each hi acts on at most k

neighboring particles of the lattice and 0 ≤ hi ≤ 1.

A state of a lattice spin system is said to satisfy an area law if its entanglement entropy with respect to
any bipartition scales with the size of its boundary.

Conjecture 1.3 (The area-law conjecture). The ground states of any constant-gapped and locally interacting
lattice quantum systems satisfy the area law.

This is a much stronger statement than the trivial bound (volume laws), which says that the entanglement
entropy is proportional to the number of particles in the subsystems. An intuitive reason to believe in this
conjecture is that one might expect the entanglement is only generated by the local interactions near the
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boundary. However, it should be noted that a more general statement of the area-law conjecture for quantum
systems defined on graphs has been disproved via a counter-example in [6].

Conjecture 1.3 has been proved for all 1D systems by Hastings [1], but the higher dimensional cases
remain an open problem. The proof in [1] uses the Lieb-Robinson bound and sophisticated Fourier analysis
to achieve a very rough upper bound that does not scale up to higher dimensions. In this paper, we focus on
a new technique that convolves ideas from combinatorics and approximation theory: Approximation Ground
State Projector (AGSP) [2, 3, 7]. AGSP provides hopes to improving the entanglement bound and scaling
up. A timeline of the development of AGSP-based area law proofs presented to this paper is as follows.
Ref. [7] provides the first AGSP-based area law proof for 1D frustration-free (FF) systems (defined below).
Ref. [2] exponentially improves the entanglement bound over those in [1, 7] on FF systems. Ref. [3] proves
the area law for general 1D systems, their bound is also believed to be tight in terms of the spectral gap.
Most recently, ref. [4] provides the first proof for 2D FF systems with an extra assumption called “locally
gapped”.

Definition 1.4 (Frustration-free Hamiltonians). A system is frustration-free when every ground state |Ω⟩ ∈
Vgs minimizes the energy of each local term hi separately. That is, hi |Ω⟩ = 0 for any i.

Examples of such systems include the AKLT model, spin 1/2 ferromagnetic XXZ chain, and Kitaev’s
toric code. These systems are somewhat more “classical” and working with them is often considered the first
step towards proving area laws on general (frustrated) systems. This intuition can be seen via an analogy to
the classical constraint satisfaction problems (CSP). An FF Hamiltonian is thus in analogy to a CSP where
all constraints can be satisfied simultaneously. To make the problem even more CSP-like, one can introduce
an auxiliary Hamiltonian in which every hi is replaced by a projector Qi whose null space coincides with the
null space of hi. The auxiliary Hamiltonian Ĥ :=

∑
iQi and the original Hamiltonian H =

∑
i hi share the

same ground space. Furthermore, since 0 ≤ hi ≤ Qi, the spectral gaps are related by γ(Ĥ) ≥ γ(H). Thus,
from now on we will assume H is a sum of local projectors Qi. In addition, we denote the local projector on
the ground space of Qi as Pi = 1−Qi.

The rest of this report will mostly discuss the applications of AGSP on frustration-free spin systems.
Section 2 reviews some important tools for proving area laws, including AGSP, the detectability lemma, and
Chebyshev polynomials. Then, we provide an overview of the proofs in [2, 3] and [4] for 1D and 2D FF
systems in Section 3 and Section 4. Finally, we discuss open questions and other research directions related
to area laws in Section 5

2 Preliminary tools

2.1 Approximate ground state projector

A fruitful approach to proving an area law is to find a projector K that approximates the ground space
projector Πgs := |Ω⟩ ⟨Ω| whose Schmidt rank across the cut can be controlled. The Schmidt decomposition

across a bipartition of a pure state is defined as |Ψ⟩AB =
∑k
i=1 λi |ψi⟩A |ϕi⟩B , where each set {|ψi⟩}i or

{|ϕi⟩}i forms an orthonormal set in the associated Hilbert space, λ1 ≥ λ2 ≥ . . . λk > 0, and
∑
i λ

2
i = 1.

Then, the Schmidt rank of |Ψ⟩ is SR(Ψ) = k. Similarly, the Schmidt rank of an operator O is SR(O) :=
maxψ SR(Oψ)/SR(ψ).

Definition 2.1 (Approximate ground state projector (AGSP)). An operator K is a (D,∆)-AGSP if it
satisfies the following properties

(a) (Ground space invariance) K |Ω⟩ = |Ω⟩ for any |Ω⟩ ∈ Vgs

(b) (Shrinking factor) ∥K |Ω⊥⟩ ∥2 ≤ ∆ and also K |Ω⊥⟩ ∈ V ⊥
gs for any normalized state |Ω⊥⟩ in V ⊥

gs

(c) (Entanglement) SR(K) ≤ D
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Figure 1: [9] Decomposing the local terms of a 1D Hamiltonian H =
∑
i hi with 2-local, nearest-neighbor

interactions into two layers an even layer and an odd layer. Here, hi = Qi and Pi = 1 − Qi. So Πeven =∏
i even Pi, Πodd =

∏
i odd Pi and DL(H) = ΠevenΠodd.

The key idea is to first find a product state |Ψ⟩ = |ψ⟩A⊗|ϕ⟩B which has a non-trivial overlap with Ω. If D
and ∆ are small, we can use K and |Ψ⟩ to generate a state with small Schmidt rank that approximates |Ω⟩.
In particular, we will iteratively apply K on |Ψ⟩ and normalizing the resultant state (that is |vℓ⟩ = Kℓ|Ψ⟩

∥Kℓ|Ψ⟩∥
with |v0⟩ being |Ψ⟩). Observe that SR(|vℓ⟩) ≤ Dℓ, thus we hope to find a good AGSP, one that ‘shrinks’ the
excited space V ⊥

gs fast enough such that only a few applications of K are needed. For example, if K = Πgs
(such that it is a (SR(Ω), 0)-AGSP), then one application of K immediately yields |Ω⟩. This intuition will
be made more rigorous when we present the work of [2] in Section 3.

2.2 The detectability lemma

One of the original approaches for constructing AGSP in FF systems is the detectability lemma (DL) [8].
The DL operator is constructed by first arranging the Hamiltonian terms into L “layers” T1, . . . , TL whose
terms are pairwise commuting. For each layer, define the layer projector to be Πℓ :=

∏
i∈Tℓ

Pi. Then, the
DL operator is defined as

DL(H) :=

L∏
ℓ=1

∏
i∈Tℓ

Pi. (1)

For instance, the DL operator in a 2-local 1D Hamiltonian is visualized in Figure 1.
The detectability lemma provides a bound on the shrinking factor of the DL operator.

Lemma 2.2 (Detectability lemma (improved) [9]). For any state |Ω⊥⟩ orthogonal to the ground space of
2-local 1D Hamiltonian H of spectral gap γ,

∥DL(H)
∣∣ψ⊥〉 ∥2 ≤ (γ/4 + 1)−1.

One of the great benefits of using the DL is that the all projections in a given layer commute, and, hence,
the analysis becomes almost classical. Aharonov et al. [7] use the DL operator to construct an alternative
proof to Hastings [1] on FF systems, but the entanglement bound does not improve. One of reasons is
because the DL operator is a polynomial of degree n in the local terms, making its Schmidt rank too large.

2.3 Chebyshev polynomials

Chebyshev polynomials are a powerful tool in approximation theory and provide a way to improve the
polynomial construction of AGSPs. For instance, [2] use Chebyshev polynomials and DL operator to improve
the entanglement bound in 1D FF systems. Later works [3, 4], which do not rely on the DL, also use them
to construct AGSPs.

Definition 2.3 (Chebyshev polynomials of the first kind). The Chebyshev polynomial family {Tn(x)}, where
n is the polynomial degree can be equivalently defined as follows

(a) (Ordinary differential equations) Tn(x) is the solution of

(
1− x2

) d2y
dx2

− x
dy

dx
+ n2y = 0.
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(b) (Trigonometric form) If |x| ≤ 1, then

Tn(x)
def
= cos

(
n cos−1 x

)
.

(c) (Recursive form) T0(x) = 1, T1(x) = x, and

Tn+1(x) = 2xTn(x)− Tn−1(x).

The Chebyshev polynomials are used to approximate the step function fstep(x) =

{
1 if x = 0

0 otherwise
. To

this end, one needs to define a modified Chebyshev polynomial. For η ∈ (0, 1) and s > 0, define Tη,s :
[0, 1] → R as

Tη,s(x)
def
=

T⌈s⌉

(
2(1−x)
1−η − 1

)
T⌈s⌉

(
2

1−η − 1
) . (2)

The following lemma [2] states that Tη,s is an approximator of fstep.

Lemma 2.4. Tη,s(0) = 1 and |Tη,s(x)| ≤ 2e−2s
√
η for η ≤ x ≤ 1.

3 1D area laws

3.1 Frustration-free systems

We present an overview of the proof of the area law for 1D frustration-free (FF) systems by Arad-Landau-
Vazirani [2].

Theorem 3.1 (Area law for 1D frustration-free systems). Consider a gapped, frustration-free 1D chain of
locally interacting particles. Let d be the dimension of each particle and γ = O(1) be the spectral gap of the
system and define X = log d

γ . The entanglement entropy across any cut in the chain is bounded by

S ≤ O(1) ·X3 log8X.

The proof finds a good AGSP using a Chebyshev polynomials in terms of the local terms Qi. First,
the following lemma quantifies the connection between the existence of a good AGSP and a bound on the
entanglement entropy.

Lemma 3.2 (Entanglement entropy bound via good AGSP). If there exists a (D,∆)-AGSP K with D ·∆ <
1/2, then the ground state entanglement entropy is bounded by

S ≤ O(1) · logD.

Proof sketch. The proof has two steps. The first step shows that there exists a product state |L,R⟩ such
that ⟨Ω|L,R⟩ ≥ 1/

√
2D. This state can be found by starting from a product state |ϕ′⟩ who does not satisfy

this inequality. Then it can be shown that a Schmidt vector of K|ϕ′⟩
∥K|ϕ′⟩∥ has strictly larger overlap with |Ω⟩

than |ϕ′⟩ does. Thus, iteratively applying this procedure produces a product state whose overlap with Ω is
arbitrarily close to 1/

√
2D. From here, the second step applies K on |L,R⟩ a few times to constructs a state

with low Schmidt rank and high overlap with |Ω⟩. Applying the Young-Eckart theorem, one can then show
that only a few Schmidt coefficients of |Ω⟩ contribute significantly to the entanglement entropy.
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Armed with the above lemma, ref. [2] finds a good AGSP with logD ≤ O(1) ·X3 log8X stated below,
whereby establishing Theorem 3.1.

Lemma 3.3 (The diluting lemma). There exists a (D,∆)-AGSP with D · ∆ < 1/2 and logD ≤ O(1) ·
X3 log8X where X = log d

γ .

Proof sketch. The proof follows the steps below

1. Assumptions: the Hamiltonian terms are 2-local, thus {Pi}i can be partitioned into two commuting
“layers” Πodd and Πeven; in addition assume the cut intersects Πeven at particles i∗, i∗ + 1.

2. Observation: the naive DL operator ΠevenΠodd does not work because it has D0 = d2 (due to the
projector Pi that intersects with the cut) and ∆0 ≤ 1

1+γ/4 (improved DL [9]). In general D0 ·∆0 > 1.

3. Idea 1 (coarse-graining): one can fuse k adjacent particles (making them a single particle of dimension
dk) and set the new projector P ′

i to be the projector onto the common ground space of the original 2k
adjacent particles corresponding to the coarse-grained particles at i and i + 1. It can be shown that
the DL operator of this coarse-grained Hamiltonian is (D′,∆′) = (Dk

0 ,∆
k
0) (Claim IV.7 [2]). This trick

can yield D′ ·∆′ < 1/2 if D0 ·∆0 < 1, but this condition generally does not hold.

4. Goal: instead of letting D grow trivially as above (via coarse-graining or simply exponentiating Kℓ),
we seek a (D1D2,∆)-AGSP A such that Aℓ is a (D1D

ℓ
2,∆

ℓ)-AGSP and D2 ·∆ < 1/2. If we can find
such a projector A, then Aℓ0 is a good AGSP for any ℓ0 > ⌈logD1⌉.

5. Idea 2: we modify the DL operator. We split Πeven into Πm, composing of m projectors around the
cut (called the middle region), and Πrest (the remaining projectors in Πeven), then approximate Πm
by some Π̂m. So that our AGSP is A = Π̂mΠrestΠodd. The idea is that only m projectors (m to be
determined) around the cut contribute significantly to the Schmidt rank, thus we hope to approximate
Πm by some Π̂m whose Schmidt rank can be better controlled.

6. Fact (controlling the SR of one cut by another): in a 1D system, if ri and rj are the SR of |Ψ⟩ that
correspond to two cuts between particles i, i+1 and j, j+1, respectively, then d−|i−j|rj ≤ ri ≤ d|i−j|rj
(recall that d is the Hilbert space dimension of each particle).

7. Idea 3: we choose Π̂m to be a polynomial in Qi’s (only the projectors in the middle region), we bound
the SR of each term in the polynomial with respect to a cut (different terms might have different cuts,
see Claim IV.6 [2]). Then we lift these bounds to the cut at i∗, i∗ + 1. Due to the fact in step 6, the
SR of each term in Π̂m with respect to this cut is larger by a factor of at most d⌈m/2⌉ < Dm

0 . This
factor will play the role of D1 mentioned in step 4 above.
Why do we want to construct Π̂m this way? What properties do we want the polynomial to have?

• First, if we merely use Πm =
∏m
i=1 Pi =

∏m
i=1(1−Qi) (which is a degree-m polynomial in terms

of the projectors), the SR of Aℓ grows as Dℓ
0 which is too fast as stated earlier.

• We want to bound the SR of Aℓ = (Π̂mΠrestΠodd)
ℓ, which is a polynomial of the middle-region

projectors. We can bound the SR of each term in the polynomial separately using any cut of
choice, then sum these SR bounds to obtain a SR bound for Aℓ. The resultant “amortized”
bound can be better than the trivial bound where every term uses the same cut.
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• Therefore, we want Π̂m to be a low-degree polynomial approximating Πm.

8. Idea 4 (Πm as a step function): observe that if we define N =
∑m
i=1Qi and fstep(x) =

{
1 if x = 0

0 otherwise
,

then fstep(N) = Πm. This follows from that fact that Qi are commuting projectors, so N has non-
negative integer eigenvalues and its ground space is exactly what Πm projects onto. Our task is now
clear: we need to approximate fstep by a low-degree polynomials.

9. Idea 5 (Chebyshev polynomials): we choose Π̂m = [Cm(N)]q where Cm(x) is a polynomial defined in
terms of the degree-

√
m Chebyshev polynomial (Section 2.3) and q is to be chosen. Cm is designed such

that Cm(0) = 1 and |Cm(x)|2 < 1/9 for any 1 ≤ x ≤ m. Hence, Π̂m is a degree-q
√
m polynomial of Qi’s,

which is a significant improvement over the trivial degree m. The shrinking factor of A = Π̂mΠrestΠodd
can also be easily bounded by ∆0 + (1/9)q.

10. Bounding the SR of Aℓ: this is the main technical part of the proof, but the idea is as explained in step

7 above. It turns out that Aℓ is a (D1D
ℓ
2,∆

′ℓ), where D1 = Dm
0 , D2 = 20(q

√
m)3/22

1
2 log2 q

√
mD

q/
√
m

0 ,
and ∆′ = ∆0 + (1/9)q.

11. At this point, we need to ensure D2 ·∆′ < 1. This is finally where the coarse-graining trick comes into
play (D0,∆0) → (Dk

0 ,∆
k
0).

12. Pick m, q, k to obtain the desired AGSP.

In summary, the proof relies on the Chebyshev polynomials to construct a good AGSP in the spirit of
the detectability lemma operator.

3.2 Frustrated systems

A follow-up work by Arad et al. [3] has generalized the Chebyshev-based AGSP approach to prove the area
law for frustrated 1D systems. This work does not use the DL operator but instead constructs a truncated

Hamiltonian H(t) = H
(t)
L +Hm+H

(t)
R from the terms in the original Hamiltonian H, thus can be generalized

to the frustrated case. Here Hm contains the m terms around the cut and t > 0 is a threshold parameter
above which all eigenvalues of HL or HR are set to t.

The motivation for this decomposition is similar to that of the the decomposition into Πm and Πrest
in the proof above. The authors of [3] define the AGSP to be a (shifted and scaled) degree-ℓ Chebyshev
polynomial in H(t): K = f(H(t)) (note that now the polynomial applies on all terms, not only Hm). As
before, the parameters m, t, and ℓ need to be chosen satisfy Lemma 3.2, but now we also require that the
ground state of H(t) to be a good approximate of that of the original Hamiltonian. It can be shown that for
sufficiently large t the spectral gap of H(t) is larger than that of H, and their ground states are exponentially
close in t:

Theorem 3.4 (Robustness theorem [3]). Let |Ω⟩, ε0, γ be the unique ground state (g.s.), the g.s. energy, and
the spectral gap of H. Let |Ω′⟩, ε′0 and γ′ be the equivalent quantities for H(t). Then for t ≥ O(ε0/γ

2 +1/γ)
we have

(a) γ′ = Ω(γ)

6



(b) ∥ |Ω′⟩ − |Ω⟩ ∥ ≤ 2−Ω(t).

If H is frustration-free, their ground states are exactly the same.

Since the ground states are the same in the frustration-free (FF) case, the analysis only needs to pick
appropriate t,m, ℓ to find obtain a good AGSP (Lemma 3.2). We present an overview of the proof of the
FF case first. As a reminder, we want f to be an approximate of the step function f ≈ fstep(x). When t
satisfies the condition in Theorem 3.4, this means we require f(x) to be small whenever γ ≤ x ≤ u, where
u = m+ 2t is an upper bound for ∥H(t)∥. This error is indeed the shrinking factor ∆ of the AGSP and can
be controller by the following lemma:

Lemma 3.5. There is a shifted and scaled degree-ℓ Chebyshev polynomial Cℓ such that

√
∆ = e−Ω(ℓ

√
γ/∥H(t)∥) = e−Ω(ℓ

√
γ/(m+2t)).

The Schmidt rank (SR) bound for K = Cℓ(H
(t)) requires a significantly more sophisticated proof, but

the idea is similar to the amortized SR analysis mentioned in step 7 in the proof of Lemma 3.3.

Lemma 3.6. The Schmidt rank of K = Cℓ(H
(t)) (where Cℓ is an arbitrary degree-ℓ polynomial) is bounded

by D = (dℓ)O(max{ℓ/m,
√
ℓ}) (recall that d is the dimension of each particle).

Setting ℓ = O(m2) and m = O( log
2 d
γ ) and Combining Lemma 3.5, Lemma 3.6, and Lemma 3.2, one can

obtain an area law for FF systems with a entanglement entropy bound of O( log
3 d
γ ).

For frustrated systems, one needs to choose the parameter t more carefully so that the ground state of
H(t) is sufficiently close to that of H. Instead of applying Cℓ(H

(t)) with the same t multiple times on a good
“guess” product state (as done in Lemma 3.2), the authors of [3] apply this with varying t as the state gets
closer to the true ground state. The intuition is that for a fixed t, H(t) is a good approximate of H in the
region near the ground space. Hence, the closer we are to the groud space (zero energy), the smaller t needs

to be. This reduces the SR of the resultant state, establishing an area law with the same bound of O( log
3 d
γ )

for entanglement entropy on general frustrated 1D systems.

4 2D frustration-free area law

Due to its controllable tradeoff between the Schmidt rank and shrinking factor, Chebyshev-based AGSP
gives hopes to prove 2D area laws. Indeed, ref. [4] used ideas from it to prove an area law for 2D frustration-
free systems with respect to a vertical cut. At a high level, their proof finds an AGSP for each 1D strip
orthogonal to the cut, then merges these AGSPs to obtain an AGSP for the entire lattice. This approach
however requires better 1D AGSPs in the sense that the degree of the polynomial approximating fstep should
have a better dependence on the approximation error. In particular, as opposed to Lemma 3.5 where the
approximation error ε =

√
∆ = e−Ω(ℓ/

√
n), the authors of [4] construct a polynomial such that ε = e−Ω(ℓ2/n).

To achieve this error dependence requires an extra assumption called “local gap”:

Definition 4.1 (Locally gapped Hamiltonians). Consider a (n + 1) × L lattice. Let H =
∑
i,j hij, where

hi,j is a projector acting on the qubits at {i, i+ 1} × {j, j + 1}. For any rectangular region S, let HS be the
Hamiltonian obtained by summing all terms that have support in S. Define the local gap of H to be

γ = min
S⊆[n]×[L+1]

gap

 ∑
(i,j)∈S

hij

 .

If γ = Ω(1), we say H is locally gapped.

7



To see why we need this assumption, we first investigate the structure of the polynomial constructed by
[4]. We consider an FF Hamiltonian H =

∑
i hi. The observation is that, if the terms are commuting, then

the fstep function can be better approximated by combining Chebyshev polynomials and the multivariate
polynomial AND. Recall that we have seen in Section 1 that for FF systems we can assume the Hamiltonian
terms are projectors without loss of generality. Since the Hamiltonian terms are commuting and have
eigenvalues 0 or 1, we can work in a basis in which they are simultaneously diagonal and the problem reduces
to that of approximating the product of binary variables xi which label the eigenvalues of Πi = I − hi. In
this basis, the univariate step function fstep, which acts on the eigenvalue of the entire Hamiltonian, can
be replaced by the function AND(x1, . . . , xn). Thus, one’s task is to approximate AND by a low-degree
polynomial. Although a Chebyshev polynomial by itself can be a good approximator (univariate in the sum
x1 + . . .+ xn) for AND, we need an approximator with a better error dependence as stated earlier. Ref. [4]
achieved this by combining Chebyshev polynomials with so-called robust polynomials:

Lemma 4.2 (Robust polynomials). Define on the domain [0, 1]n the function

Rob(x1, . . . , xn) =

{
1 if x1 = . . . = xn = 1

0 otherwise
.

For any ε ≤ 1/10, there exists a degree-3n polynomial R̃ob with at most 25m monomials such that

|R̃ob(x1, . . . , xn)− Rob(x1, . . . , xn)| ≤ (10ε)n.

Armed with this robust polynomial approximation for AND, ref. [4] divides the Hamiltonian terms into
subsets. On each subset, a Chebyshev polynomial is used to approximate the ground state projector, then

R̃ob is applied on the outputs of these subsets. E.g., letting the index subsets be I1, I2, . . . , Ik (such that⋃
i Ii = [n]) and the Chebyshev polynomial be p, we have

P (x) = R̃ob

p
1− 1

|I1|
∑
j∈I1

xj

 , p

1− 1

|I2|
∑
j∈I2

xj

 , . . . , p

1− 1

|Ik|
∑
j∈Ik

xj

 .

The following theorem gives a bound on the error of the function P in approximating AND which the authors
claim cannot be further improved.

Theorem 4.3 (Optimal approximation of AND). Let n be a positive integer. For every real number ℓ ∈
(
√
n, n), there exists a polynomial P (x) of degree O(ℓ) such that

|P (x)−AND(x)| = e−Ω(ℓ2/n) for all x ∈ {0, 1}n.

At this point it is worthwhile to summarize what we have achieved. We have constructed a multivariate
polynomial that approximates the fstep that achieves a better error bound that that of Lemma 3.5 in a com-
muting FF Hamiltonian. To drop the commuting terms requirement, ref. [4] defines the “merge property”,
which asserts that ΠSΠT ≈ ΠS∪T for overlapping intervals S, T , with error decreasing exponentially in the
size of the overlap region (in the commuting case ΠSΠT = ΠS∪T ). With this property, they show that a
polynomial approximator of fstep with the same error dependence can be constructed by a recursive use of
the robust polynomial, with one use of the Chebyshev polynomial and the local gap property (Definition 4.1)
in the base level of the recursion and the merge property to bound the error in the recursion. Indeed, they
show that the local gap property implies the merge property for the following partitions of the 2D lattice

Hj
def
=

1

2w

 ∑
1≤i<w

hij + (I −ΠL,j) + (I −ΠR,j)

 (3)

This construction of Hj is reminiscent of the H
(t)
L , Hm, H

(t)
R decomposition in the 1D proof.

This allows the authors to prove the following theorems.

8



Figure 2: [4] (a) The vertical cut (blue line), region of width w (blue), and support of the operator Hj from
Equation (3) (red). (b) For an interval S ⊆ [n], the red region depicts the support of HS . Given a partition
S = ABC, the merge property asserts ΠABΠBC ≈ ΠS (the shading depicts AB and BC).

Theorem 4.4. There exist real numbers α ≤ n(γ/w)−1/4 and β = (γ/w)−1/2n1−O((logn)−1/4) such that there
exists a Hermitian multivariate polynomial P in {Hj}nj=1 where

PΠ = Π and ∥P −Π∥ ≤ exp
(
−βe

√
log(n)

)
,

and P contains at most (2α)β monomials of the form (Hj1)
i1 (Hj2)

i2 . . . (Hjk)
ik with i1 + . . . ik ≤ αand

k ≤ β.

Theorem 4.5 (Amortized SR bound). The Schmidt rank of each monomial in Theorem 4.4 is bounded by(
16α4d4n

) α
w+β+wn

.

Combining Theorem 4.4 and Theorem 4.5, letting K = Pw
2

and w = Θ(n(logn)
−1/5

), we find a AGSP K
as defined in Lemma 3.2, whereby establishing the following area law:

Theorem 4.6. Suppose γ = Ω(1) and d = O(1). The entanglement entropy of the ground state across the

cut is at most n1+O(log−1/5 n).

5 Discussion

We have presented an overview of the area-law conjecture and the approximate group state projector (AGSP)
technique used in the existing proofs for area laws on 1D and frustration-free 2D quantum many-body
systems. Along the way, we introduced the detectability lemma and Chebyshev polynomials, which serve as
tools for constructing AGSP.

General (frustrated) 2D area laws and higher dimensions remain an open problem. Numerically, an area
law has been observed in a 3D superfluid system [10]. Another useful structural property of ground states
is the entanglement spread, which roughly measures the ratio between the largest and smallest Schmidt
coefficients. This quantity has an intimate connection to the communication complexity of testing bipartite
ground states. Ref. [11] has shown that the entanglement spread admits an area law on any generic graph,
and a sub-area law on lattices. Non-local Hamiltonians have also been studied. For example, Kuwahara and
Saito [12] proved an area law for power-law interacting 1D systems.

In terms of computational complexity, Hastings [1] showed that a 1D area law implies that the ground
state of a gapped Hamiltonian admits an efficient approximation (e.g. matrix product states). Thus, the
problem of approximating these ground states is in NP. Furthermore, the algorithm in [13] shows that this
problem is in fact in P. Interestingly, the algorithm at its core also constructs (randomized) AGSP to project
a good initial state to the ground space. In this line of research, one could ask whether an area law also
leads to an NP (or even P) algorithm in the 2D case.
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